Natural Ricci Solitons on Tangent and Unit Tangent Bundles

نویسندگان

چکیده

Considering pseudo-Riemannian $g$-natural metrics on tangent bundles, we prove that the condition of being Ricci soliton is hereditary in sense a structure bundle gives rise to base manifold. Restricting ourselves some class metrics, show if and only manifold flat potential vector field complete lift conformal field. We give then classification fields Riemannian When unit bundles over constant curvature are endowed with Kaluza-Klein type metric, structures whose fiber-preserving, inferring existence them which non Einstein.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Remarks on η-Einstein unit tangent bundles

We study the geometric properties of the base manifold for the unit tangent bundle satisfying the η-Einstein condition with the standard contact metric structure. One of the main theorems is that the unit tangent bundle of 4-dimensional Einstein manifold, equipped with the canonical contact metric structure, is ηEinstein manifold if and only if base manifold is the space of constant sectional c...

متن کامل

New structures on the tangent bundles and tangent sphere bundles

In this paper we study a Riemanian metric on the tangent bundle T (M) of a Riemannian manifold M which generalizes Sasaki metric and Cheeger Gromoll metric and a compatible almost complex structure which together with the metric confers to T (M) a structure of locally conformal almost Kählerian manifold. This is the natural generalization of the well known almost Kählerian structure on T (M). W...

متن کامل

Tangent and Cotangent Bundles

of subsets of TM: Note that i) 8 (p;Xp) 2 TM , as p 2M ) there exists (U ; ) 2 S such that p 2 U ; i.e. (p;Xp) 2 TU , and we have TU =  1 (R) 2 : ii) If we de…ne F : TpM ! R by F (Xp) = (Xp(x); Xp(x); :::::; Xp(x)) where x; x; ::::; x are local coordinates on (U ; ), then clearly F is an isomorphism, so  (p; Xp) = ( (p); F ( Xp)); and  1 = ( 1 ; F 1 ): Now take  1 (U);  1 (V ) 2 and suppos...

متن کامل

Tangent and Cotangent Bundles

i) 8 (p;Xp) 2 TM , as p 2M ) there exists (U ; ) 2 S such that p 2 U ; i.e. (p;Xp) 2 TU , and we have TU =  1 (R) 2 . ii) If we de…ne F : TpM ! R by F (Xp) = (Xp(x); Xp(x); :::::; Xp(x)) where x; x; ::::; x are local coordinates on (U ; ), then clearly F is an isomorphism, so  (p; Xp) = ( (p); F ( Xp)); and  1 = ( 1 ; F 1 ). Now take  1 (U);  1 (V ) 2 and suppose (p; Xp) 2  1 (U)\  1 (V ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Physics Analysis Geometry

سال: 2021

ISSN: ['1812-9471', '1817-5805']

DOI: https://doi.org/10.15407/mag17.01.003